Nonlinear Preconditioning Techniques for Full-Space Lagrange-Newton Solution of PDE-Constrained Optimization Problems

نویسندگان

  • Haijian Yang
  • Feng-Nan Hwang
  • Xiao-Chuan Cai
چکیده

The full-space Lagrange–Newton algorithm is one of the numerical algorithms for solving problems arising from optimization problems constrained by nonlinear partial differential equations. Newton-type methods enjoy fast convergence when the nonlinearity in the system is well-balanced; however, for some problems, such as the control of incompressible flows, even linear convergence is difficult to achieve and a long stagnation period often appears in the iteration history. In this work, we introduce a nonlinearly preconditioned inexact Newton algorithm for the boundary control of incompressible flows. The system has nine field variables, and each field variable plays a different role in the nonlinearity of the system. The nonlinear preconditioner approximately removes some of the field variables, and as a result, the nonlinearity is balanced and inexact Newton converges much faster when compared to the unpreconditioned inexact Newton method or its two-grid version. Some numerical results are presented to demonstrate the robustness and efficiency of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver

Large scale optimization of systems governed by partial differential equations (PDEs) is a frontier problem in scientific computation. The state-of-the-art for such problems is reduced quasi-Newton sequential quadratic programming (SQP) methods. These methods take full advantage of existing PDE solver technology and parallelize well. However, their algorithmic scalability is questionable; for c...

متن کامل

Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows

In part I of this article, we proposed a Lagrange–Newton–Krylov–Schur (LNKS) method for the solution of optimization problems that are constrained by partial differential equations. LNKS uses Krylov iterations to solve the linearized Karush–Kuhn–Tucker system of optimality conditions in the full space of states, adjoints, and decision variables, but invokes a preconditioner inspired by reduced ...

متن کامل

Domain Decomposition Methods for PDE Constrained Optimization Problems

Optimization problems constrained by nonlinear partial differential equations have been the focus of intense research in scientific computing lately. Current methods for the parallel numerical solution of such problems involve sequential quadratic programming (SQP), with either reduced or full space approaches. In this paper we propose and investigate a class of parallel full space SQP Lagrange...

متن کامل

Inertia-Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization

Fast nonlinear programming methods following the all-at-once approach usually employ Newton’s method for solving linearized Karush-Kuhn-Tucker (KKT) systems. In nonconvex problems, the Newton direction is only guaranteed to be a descent direction if the Hessian of the Lagrange function is positive definite on the nullspace of the active constraints, otherwise some modifications to Newton’s meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016